Effects of an Alkaline Diet on EGFR-TKI Therapy in EGFR Mutation-positive NSCLC

REO HAMAGUCHI¹, TOSHIHIRO OKAMOTO², MASAAKI SATO¹, MICHIKO HASEGAWA¹ and HIROMI WADA¹

¹Karasuma Wada Clinic, Yasaka Karasuma-oike Building 2F, Kyoto, Japan;
²Transplant Center, Cleveland Clinic, Cleveland, OH, U.S.A.
ANTICANCER RESEARCH
International Journal of Cancer Research and Treatment

Editorial Board

P. A. ABRAHAMSSON, Malmo, Sweden
B. B. AGGARWAL, Houston, TX, USA
T. AKIMOTO, Kashiva, Chiba, Japan
P. Z. ANASTASIADIS, Jacksonville, FL, USA
A. ARGIRIS, San Antonio, TX, USA
J. P. ARMAND, Toulouse, France
V. I. AVRAMIS, Los Angeles, CA, USA
D. T. BAU, Taichung, Taiwan, ROC
G. BAUER, Hamburg, Germany
E. E. BAULEU, Le Kremlin-Bicêtre, France
J. E. BENZ, Jr., Boston, MA, USA
J. BERGH, Stockholm, Sweden
F. T. BOSMAN, Lausanne, Switzerland
M. BOUDET, La Jolla, CA, USA
J. BOYD, Miami, FL, USA
G. BROICH, Monza, Italy
O. S. BRULAND, Oslo, Norway
J. M. BUATTI, Iowa City, IA, USA
M. M. BURGER, Basel, Switzerland
M. CARBONE, Honolulu, HI, USA
C. CARBERG, Kuopio, Finland
J. CARLSSON, Uppsala, Sweden
A. F. CHAMBERS, London, ON, Canada
P. CHANDRA, Frankfurt am Main, Germany
L. CHENG, Indianapolis, IN, USA
J.-G. CHUNG, Taichung, Taiwan, ROC
R. CLARKE, Washington, DC, USA
D. DE CLEtu RAOI, Leuven, Belgium
W. DEN OTTER, Amsterdam, The Netherlands
E. F. DIAMANDIS, Toronto, ON, Canada
G. H. DIAMANDOPoulos, Boston, MA, USA
D. W. FELSER, Stanford, CA, USA
J. A. FERNANDEZ-POL, Chesterfield, MO, USA
I. J. HILDER, Houston, TX, USA
A. P. FIELDS, Jacksonville, FL, USA
H. FU, Atlanta, GA, USA
B. FUCHS, Zurich, Switzerland
D. FUCHS, Innsbruck, Austria
G. GABBIANI, Geneva, Switzerland
R. GANAPATHI, Charlotte, NC, USA
A. F. GAZDAR, Dallas, TX, USA
J. H. GESCHWIN, Baltimore, MD, USA
A. GIORDANO, Philadelphia, PA, USA
G. GITSCH, Freiburg, Germany
R. H. GOLDFARb, Guilford, CT, USA
L. HELSON, Quakertown, PA, USA
R. HENRIKSSON, Umeå, Sweden
R. M. HOFFMAN, San Diego, CA, USA
S. C. JAHNWAR, New York, NY, USA
V. J. JOHANNESEN, Oslo, Norway
B. KAINA, Mann, Germany
P.-L. KELLOKKUMPU-LEHTINEN, Tampere, Finland
D. G. KIEBAC, Schleswig, Germany
R. KLAPDOR, Hamburg, Germany
S. D. KOTTARIDIS, Athens, Greece
G. R. F. KRUEGER, Koln, Germany
Pat M. KUMAR, Manchester, UK
Shant KUMAR, Manchester, UK
O. D. LAERUM, Bergen, Norway
F. J. LEJEUNE, Lausanne, Switzerland
S. LINDER, Linköping, Sweden
L. F. LIU, Piscataway, NJ, USA
D. M. LOPEZ, Miami, FL, USA
E. LUNDGREN, Umeå, Sweden
Y. MAEHARA, Fukoku, Japan
J. MAHER, London, UK
J. MARESCAUX, Strasbourg, France
J. MARK, Skovde, Sweden
S. S. MARTIN, Baltimore, MD, USA
S. MITRA, Houston, TX, USA
S. MIYAMOTO, Fukushima, Japan
M. MONCADA, Manchester, UK
M. MUELLER, Villingen-Schwenningen, Germany
F. M. MUGGIA, New York, NY, USA
N. MAMIKI, Kanazawa, Ishikawa, Japan
R. NARAYANAN, Boca Raton, FL, USA
K. NILSSON, Uppsala, Sweden
S. PATHAK, Houston, TX, USA
J. L. PERSSON, Malmo, Sweden
G. J. PILKINGTON, Portsmouth, UK
C. D. PLATSOUCAS, Norfolk, VA, USA
A. POLLACK, Jerusalem, Israel
M. RIGAUD, Limoges, France
U. RINGBO Rg, Stockholm, Sweden
M. ROSELLI, Rome, Italy
S.T. ROSEN, Duarte, CA, USA
A. SCHAUER, Gottingen, Germany
M. SCHNEIDER, Wuppertal, Germany
J. SEHOULL, Berlin, Germany
A. SETH, Toronto, ON, Canada
G. V. SHERBET, Newcastle-upon-Tyne, UK
A. SLOMINSKI, Birmingham, AL, USA
K.-I. SOMA, Kagawa, Japan
G. S. STEIN, Burlington, VT, USA
T. STIGBRAND, Umeå, Sweden
T. M. THEOPHANIDES, Athens, Greece
P. M. UELAND, Bergen, Norway
H. VAN VLEURBERGHE, Ghent, Belgium
R. G. VILE, Rochester, MN, USA
M. WELLER, Zurich, Switzerland
J. WESTERMARK, Turku, Finland
B. WESTERMARK, Uppsala, Sweden
Y. YEN, Duarte, CA, USA
M.R. YOUNG, Charleston, SC, USA
B. ZUMOFF, New York, NY, USA
G. J. DELINASIOS, Athens, Greece
Managing Editor and Executive Publisher
J. G. DELINASIOS, Athens, Greece
Managing Editor (1981-2016)
Effects of an Alkaline Diet on EGFR-TKI Therapy in EGFR Mutation-positive NSCLC

REO HAMAGUCHI1, TOSHIHIRO OKAMOTO2, MASAAKI SATO1, MICHIKO HASEGAWA1 and HIROMI WADA1

1Karasuma Wada Clinic, Yasaka Karasuma-oike Building 2F, Kyoto, Japan; 2Transplant Center, Cleveland Clinic, Cleveland, OH, U.S.A.

Abstract. Background: The acidic tumor microenvironment is associated with progression of cancers. The purpose of this study was to investigate the association between an alkaline diet and the effect of epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI) in non-small cell lung cancer (NSCLC) patients. Patients and Methods: Eleven advanced or recurrent NSCLC patients with EGFR mutations treated with EGFR-TKI after being instructed to follow an alkaline diet were retrospectively evaluated. Results: The median progression-free survival (PFS) and overall survival (OS) were 19.5 (range=3.1-33.8) and 28.5 (range=15.4-46.6) months. The average dosage of EGFR-TKI was 56±22% of the standard dosage. Urine pH was significantly increased after the alkaline diet (6.00±0.38 vs. 6.95±0.55; p<0.05). Conclusion: An alkaline diet may enhance the effect of EGFR-TKI treatment in NSCLC patients with EGFR mutations.

A causative relationship between diet and cancer risk has not been consistently demonstrated. Prospective cohort studies showed no association between vegetable and fruit intake and reduced cancer risk, although case control studies have supported an association (1, 2). This inconsistency might be due to confounding factors, poor dietary compliance, and insufficient study duration.

Recent evidence supports the important role of metabolism and inflammation in tumor pathogenesis. A major transcription factor in inflammation, NF-κB, was involved in the cytotoxic effect of EGFR-TKI; EGFR mutation-positive lung cancer cells were sensitive to NF-κB inhibition (3). Insulin and insulin-like growth factors might stimulate tumor cell growth, based on the association between diabetes and increased risk of cancers. One meta-analysis showed that the anti-diabetic drug metformin was associated with lower cancer incidence in type 2 diabetes (4).

To date it was understood that cancer cells produce energy via high rates of glycolysis to support their rapid cell cycle (Warburg effect). Many researchers have demonstrated that the pH of the tumor microenvironment is acidic due to lactic acid accumulation through the Warburg effect (5, 6). Moreover, the carbonic anhydrase isozyme CA9 is ectopically overexpressed in solid tumors, especially in the setting of hypoxia. This enzyme catalyzes the hydration of carbon dioxide to bicarbonate and H⁺. Amith et al. reported that the activity of Na⁺/H⁺ exchanger is enhanced on breast cancer cell membranes, which contributes to cytoplasmic alkalization and local extracellular acidosis that regulates tumor proliferation and progression (7). Na⁺/H⁺ exchanger is also reported to activate cofilin-1, which is involved in the actin cytoskeleton signaling and plays a key role in cancer cell migration (8). Therefore, altering pH homeostasis in and around tumor cells might be a critical component of cancer treatment. The purpose of this study was to investigate the association between an alkaline diet and the effect of EGFR-TKI in lung cancer patients with EGFR mutations.

Patients and Methods

Patients. Of the 146 NSCLC patients who visited the Karasuma Wada Clinic between April 2013 and March 2015, there were a total of 45 patients with EGFR mutations who had advanced or recurrent NSCLC. We retrospectively analyzed 11 of these NSCLC patients who were given instructions to change their daily diet to an alkaline diet and then were treated with EGFR-TKI for the first time, regardless of whether they had previously received other treatments. We excluded 25 patients who had previously been treated with EGFR-TKI, 4 patients who did not receive EGFR-TKI treatment, 4 patients who visited our clinic less...
than 3 times and whose courses of treatment were unclear, and 1 patient who could not continue EGFR-TKI treatment because of liver dysfunction. All procedures were performed in accordance with the ethical principles expressed in the 1995 Declaration of Helsinki. The institutional review board of the Japan-Multinational Trial Organization (JMTO) approved this retrospective study.

Treatment. The patients in this study were treated with gefitinib, erlotinib, or afatinib. In all cases, the dose of EGFR-TKI was reduced owing to its adverse reactions. This is because several studies have reported that low-dose EGFR-TKI for NSCLC with EGFR mutations produces effective treatment responses similar to treatment with standard dose (9-12). Therefore, the patients were treated with the following doses; gefitinib: 125-250 mg/day, erlotinib: 25-100 mg/day, afatinib: 20-40 mg/day. An alkaline diet was defined as that with more vegetables and fruits and less meat and dairy products. All patients in our clinic were given instructions to follow an alkaline diet as part of routine clinical care. At every visit, a doctor or nurse provided patients with instructions on an alkaline diet and assessed whether patients had been following an alkaline diet regularly.

Assessment procedures. Patients were evaluated for their antitumor response to EGFR-TKI therapy using computed tomography (CT) scans of the head, chest, and abdomen, or positron emission tomography/computed tomography at intervals decided by the physician. Treatment responses were defined in accordance with the Response Evaluation Criteria in Solid Tumors group (RECIST, version 1.1). Urine pH was analyzed at the patients’ regular visits, between 1 to 4 times in 2 months.

Statistical analyses. We analyzed the data on April 30, 2017. PFS and OS were calculated using Kaplan-Meier estimates. OS is shown from the start of an alkaline diet. The dosage of EGFR-TKI is expressed as a percentage of the standard dosage. The paired t-test was used to compare the difference between urine pH before having an alkaline diet and after having an alkaline diet. Average pH value was calculated in each patient before and after having an alkaline diet and utilized in the analysis. Mean data set values are presented with ±standard deviation. All p-values were two sided and p-values of less than 0.05 were considered statistically significant. All statistical analyses were performed with EZR (version 1.32) (Saitama Medical Center, Jichi Medical University, Saitama, Japan) (13), that is a graphical user interface for modified version of R (The R Foundation for Statistical Computing, Vienna, Austria).

Results

The median age was 64.4 (range=49-73) years, and there were 6 men and 5 women. Histological examination confirmed that 7 patients had adenocarcinoma and 4 patients had non-small cell carcinoma. Seven patients were recurrent and 4 patients were clinical stage IV. Seven patients had previously undergone chemotherapy before receiving EGFR-TKI treatment. All patients received reduced dosage of EGFR-TKI treatment, and the average dosage of EGFR-TKI was 56±22% of the standard dosage (Figure 1).

The median PFS was 19.5 (range=3.1-33.8) months, as shown in Figure 2A, and the median OS was 28.5 (15.4-46.6) months, as shown in Figure 2B. Two of the 11 patients have died as of April 2017.

Figure 3 shows the average urine pH of the patients before having an alkaline diet and after having an alkaline diet, until confirmation of progressive disease. A significant difference was observed between urine pH before and after the alkaline diet (6.00±0.38 vs. 6.95±0.55; p<0.05).

Discussion

The most important finding in this report was that the case series of 11 advanced lung cancer patients demonstrated long progression-free survival and overall survival following the combination therapy of low-dose EGFR-TKI with an alkaline diet. The progression-free survival (median=19.5 months) and overall survival (median=28.5 months) of this group was longer than that reported in publications of the similar population treated with EGFR-TKI alone (median progression-free survival=9.2-13.3 months, median overall survival=18.6-22.8 months) (14-18). EGFR-TKI therapy has prolonged progression-free survival of advanced EGFR-mutation positive NSCLC compared to platinum-based chemotherapy, whereas the therapeutic potential of EGFR-TKIs might be limited due to resistance and toxicity (19, 20). Although this is a preliminary observation in the absence of a comparator group, the consistent outcomes of these 11 cases might suggest the importance of a new regimen that includes an alkaline diet.

In this study, urine pH significantly increased from baseline following initiation of an alkaline diet regimen. Urine pH is an important factor in the development and treatment of kidney stones. For example, the treatment of calcium oxalate stones involves urinary alkalization with sodium or potassium citrate. Besides pharmacologic alkalization, dietary modification also contributes to treatment success. Fruit
contains alkalotic precursors such as citrate, succinate and malate, which generate bicarbonate. In a study investigating food’s influence on urine pH, potential renal acid load was calculated to quantify the acid and base precursors present in food and to predict renal net acid excretion (positive means acidic). Meat had a potential renal acid load of +9.5 mEq, while fruit was –3.1 mEq and vegetables were –2.8 mEq (21). In the European Prospective Investigation into Cancer and Nutrition-Norfolk population (EPIC) study (n=22,038), alkaline diet with high fruit and vegetable and low meat intake was significantly associated with more alkaline urine (22). The change in urine pH following an alkaline diet observed in this study was consistent with the EPIC study.

It is difficult to dramatically alter the pH of blood through an alkaline diet, since acid-base balance is maintained by blood and tissue buffers, respiratory CO₂ depletion, and renal regulation of H⁺ excretion and HCO₃⁻ regeneration. However, both a mathematical model and rat experimental model demonstrated that oral sodium bicarbonate raises extracellular pH of tumor cells (23, 24). In addition, Robey et al. reported that sodium bicarbonate was significantly associated with reduced number of metastases in rat breast cancer model (24). This group advocated buffer therapy with sodium bicarbonate to alkalinize urine, neutralize near-tumor acidity, and inhibit tumor metastasis. Our approach with an alkaline diet is similar to buffer therapy, linked by the common concept that intake of an alkaline agent increased urine pH and had an anti-cancer effect. Therefore, these animal data support the association between urinary alkalization and prolonged survival in this study.

We acknowledge that there exist several limitations. First, this study was a retrospective analysis and the sample size was small. Second, lower dosage of EGFR-TKI than the standard was given mainly owing to adverse reactions in this study. Several studies have reported that low-dose EGFR-TKI for EGFR-mutant lung cancer resulted in effective treatment responses (9-12). Third, although we showed changes in urine pH in this study, we did not analyze the
extracellular pH surrounding cancer cells. However, it is difficult to measure the extracellular pH of cancer cells in an actual clinical setting, and hence further investigation of the association between extracellular pH and urine pH is necessary.

Conclusion

This study demonstrated prolonged progression-free survival and overall survival with the regimen of low-dose EGFR-TKI and an alkaline diet. The significant increase of urine pH suggests that the local acidic pH of tumor might be at least partially neutralized. To the best of our knowledge, this may be the first clinical evidence that an alkaline diet might be associated with better outcomes of advanced lung cancer patients.

Acknowledgements

The Authors acknowledge Matthew Blum, MD, for his editorial support.

References

Received July 2, 2017

Revised July 17, 2017

Accepted July 24, 2017
Instructions for Authors 2017

General Policy. ANTICANCER RESEARCH (AR) will accept original high quality works and reviews on all aspects of experimental and clinical cancer research. The Editorial Policy suggests that priority will be given to papers advancing the understanding of cancer causation, and to papers applying the results of basic research to cancer diagnosis, prognosis, and therapy. AR will also accept the following for publication: (a) Abstracts and Proceedings of scientific meetings on cancer, following consideration and approval by the Editorial Board; (b) Announcements of meetings related to cancer research; (c) Short reviews (of approximately 120 words) and announcements of newly received books and journals related to cancer, and (d) Announcements of awards and prizes.

The principal aim of AR is to provide prompt publication (print and online) for original works of high quality, generally within 1-2 months from final acceptance. Manuscripts will be accepted on the understanding that they report original unpublished works in the field of cancer research that are not under consideration for publication by another journal, and that they will not be published again in the same form. All authors should sign a submission letter confirming the approval of their article contents. All material submitted to AR will be subject to peer-review, when appropriate, by two members of the Editorial Board and by one suitable outside referee. All manuscripts submitted to AR are urgently treated with absolute confidence, with access restricted to the Managing Editor, the journal’s secretary, the reviewers and the printers. The Editors reserve the right to improve manuscripts on grammar and style.

The Editors and Publishers of AR accept no responsibility for the contents and opinions expressed by the contributors. Authors should warrant due diligence in the creation and issuance of their work.

NIH Open Access Policy. The journal acknowledges that authors of NIH-funded research retain the right to provide a copy of the published manuscript to the NIH four months after publication in ANTICANCER RESEARCH, for public archiving in PubMed Central.

Copyright. Once a manuscript has been published in ANTICANCER RESEARCH, which is a copyrighted publication, the legal ownership of all published parts of the paper has been transferred from the Author(s) to the journal. Material published in the journal may not be reproduced or published elsewhere without the written consent of the Managing Editor or Publisher.

Format. Two types of papers may be submitted: (i) Full papers containing completed original work, and (ii) review articles concerning fields of recognisable progress. Papers should contain all essential data in order to make the presentation clear. Reasonable economy should be exercised with respect to the number of tables and illustrations used. Papers should be written in clear, concise English. Spelling should follow that given in the “Shorter Oxford English Dictionary”.

Manuscripts. Submitted manuscripts should not exceed fourteen (14) pages (approximately 250 words per double – spaced typed page), including abstract, text, tables, figures, and references (corresponding to 4 printed pages). Papers exceeding 4 printed pages will be subject to excess page charges. All manuscripts should be divided into the following sections: (a) First page including the title of the presented work [not exceeding fifteen (15) words], full names and full postal addresses of all Authors, name of the Author to whom proofs are to be sent, key words, an abbreviated running title, an indication “review”, “clinical”, “epidemiological”, or “experimental” study, and the date of submission. (Note: The order of the Authors is not necessarily indicative of their contribution to the work. Authors may note their individual contribution(s) in the appropriate section(s) of the presented work); (b) Abstract not exceeding 150 words, organized according to the following headings: Background/Aim – Materials and Methods/Patients and Methods – Results – Conclusion; (c) Introduction; (d) Materials and Methods/Patients and Methods; (e) Results; (f) Discussion; (g) Acknowledgements; (h) References. All pages must be numbered consecutively. Footnotes should be avoided. Review articles may follow a different style according to the subject matter and the Author’s opinion. Review articles should not exceed 35 pages (approximately 250 words per double-spaced typed page) including all tables, figures, and references.

Figures. All figures should appear at the end of the submitted document file. Once a manuscript is accepted all figures and graphs should be submitted separately in either jpg, tiff or pdf format and at a minimum resolution of 300 dpi. Graphs must be submitted as pictures made from drawings and must not require any artwork, typesetting, or size modifications. Symbols, numbering and lettering should be clearly legible. The number and top of each figure must be indicated. Pages that include color figures are subject to color charges.

Tables. All tables should appear at the end of the submitted document file. Once a manuscript is accepted, each table should be submitted separately, typed double-spaced. Tables should be numbered with Roman numerals and should include a short title.

Clinical Trials. Authors of manuscripts describing clinical trials should provide the appropriate clinical trial number in the correct format in the text.

For International Standard Randomised Controlled Trials (ISRCTN) Registry (a not-for-profit organization whose registry is administered by Current Controlled Trials Ltd.) the unique number must be provided in this format: ISRCTNXXXXXXXX (where XXXXXXXXX represents the unique number, always prefixed by “ISRCTN”). Please note that there is no space between the prefix “ISRCTN” and the number. Example: ISRCTN47956475.

For Clinicaltrials.gov registered trials, the unique number must be provided in this format: NCTXXXXXXXX (where XXXXXXXXX represents the unique number, always prefixed by ‘NCT’). Please note that there is no space between the prefix ‘NCT’ and the number. Example: NCT00001789.

Ethical Policies and Standards. ANTICANCER RESEARCH agrees with and follows the “Uniform Requirements for Manuscripts Submitted to Biomedical Journals” established by the International Committee of Medical Journal Editors in 1978 and updated in October 2001 (www.icmje.org). Microarray data analysis should comply with the “Minimum Information About Microarray Experiments (MIAME) standard”. Specific guidelines are provided at the “Microarray Gene Expression Data Society” (MGED) website. Presentation of genome sequences should follow the guidelines of the NHGRI Policy on Release of Human Genomic Sequence Data. Research involving human beings must adhere to the principles of the Declaration of Helsinki and Title 45, U.S. Code of Federal Regulations, Part 46, Protection of Human Subjects, effective December 13, 2001. Research involving animals must adhere to the Guiding Principles in the Care and Use of Animals approved by the Council of the American Physiological Society. The use of animals in biomedical research should be under the careful supervision of a person adequately trained in this field and the animals must be treated humanely at all times. Research involving the use of human foetuses, foetal tissue, embryos and embryonic cells should adhere to the U.S. Public Law 103-41, effective December 13, 2001.

Submission of Manuscripts. Please follow the Instructions for Authors regarding the format of your manuscript and references. Manuscripts must be submitted only through our online submission system at: http://www.iiar-submissions.com/login.html In case a submission is incomplete, the corresponding Author will be notified accordingly. Questions regarding difficulties in using the online submission system should be addressed to: email: journals@iiar-anticancer.org

Galley Proofs. Unless otherwise indicated, galley proofs will be sent to the corresponding Author of the submission. Corrections of galley proofs should be returned to the Editorial Office within 12 days from receipt. Reprints, PDF files, and/or Open Access may be ordered after the acceptance of the paper. Authors of online open access articles are entitled to a complimentary online subscription to Anticancer Research for the current year and all previous digital content since 2004. Requests should be addressed to the Editorial Office. Galley proofs should be returned corrected to the Editorial Office by email within two days.

Specific information and additional instructions for Authors

1. Anticancer Research (AR) closely follows the new developments in all fields of experimental and clinical cancer research by (a) inviting reviews on topics of immediate importance and substantial progress in the last three years, and (b) providing the highest priority for rapid publication to manuscripts presenting original results judged to be of exceptional value. Theoretical papers will only be considered and accepted if they bear a significant impact or formulate existing knowledge for the benefit of research progress.

2. Anticancer Research will consider the publication of conference proceedings and/or abstracts provided that the material submitted fulfils the quality requirements and instructions of the journal, following the regular review process by two suitable referees.

3. An acknowledgement of receipt, including the article number, title and date of receipt is sent to the corresponding author of each manuscript upon receipt. If this receipt is not received within 20 days from submission, the author should call or write to the Editorial Office to ensure that the manuscript (or the receipt) was not lost in the mail or during electronic submission.

4. Each manuscript submitted to AR is sent for review in confidence to two suitable referees with the request to return the manuscript with their comments to the Editorial Office within 12 days from receipt. If reviewers need a longer time or wish to send the manuscript to another expert, the manuscript may be returned to the Editorial Office with a delay. All manuscripts submitted to AR, are treated in confidence, without access to any person other than the Managing Editor, the journal’s secretary, the reviewers and the printers.
5. All accepted manuscripts are peer-reviewed and carefully corrected in style and language, if necessary, to make presentation clear. (There is no fee for this service). Every effort is made (a) to maintain the personal style of the author’s writing and (b) to avoid change of meaning. Authors will be requested to examine carefully manuscripts which have undergone language correction at the pre-proof or proof stage.

6. Authors should pay attention to the following points when writing an article for AR:
 - The Instructions to Authors must be followed in every detail.
 - The presentation of the experimental methods should be clear and complete in every detail facilitating reproducibility by other scientists.
 - The presentation of results should be simple and straightforward in style. Results and discussion should not be combined into one section, unless the paper is short.
 - Results given in figures should not be repeated in tables.
 - Figures (graphs or photographs) should be prepared at a width of 8 or 17 cm with legible numbers and lettering.
 - Photographs should be clear with high contrast, presenting the actual observation described in the legend and in the text. Each legend should provide a complete description, being self-explanatory, including technique of preparation, information about the specimen and magnification.
 - Statistical analysis should be elaborated wherever it is necessary. Simplification of presentation by giving only numerical or % values should be avoided.
 - Fidelity of the techniques and reproducibility of the results, should be points of particular importance in the discussion section. Authors are advised to check the correctness of their methods and results carefully before writing an article. Probable or dubious explanations should be avoided.
 - Authors should not cite results submitted for publication in the reference section. Such results may be described briefly in the text with a note in parenthesis (submitted for publication by… authors, year).
 - The References section should provide as complete a coverage of the literature as possible including all the relevant works published up to the time of submission.
 - By following these instructions, Authors will facilitate a more rapid review and processing of their manuscripts and will provide the readers with concise and useful papers.

7. Following review and acceptance, a manuscript is examined in language and style, and galley proofs are rapidly prepared. Second proofs are not sent unless required.

8. Authors should correct their galley proofs very carefully and preferably twice. An additional correction by a colleague always proves to be useful. Particular attention should be paid to chemical formulas, mathematical equations, symbols, medical nomenclature etc. Any system of correction marks can be used in a clear manner, preferably with a red pen. Additions or clarifications are allowed provided that they improve the presentation but do not bring new results (no fee).

9. Articles submitted to AR may be rejected without review if:
 - they do not fall within the journal's policy.
 - they do not follow the instructions for authors.
 - language is unclear.
 - results are not sufficient to support a final conclusion.
 - results are not objectively based on valid experiments.
 - they repeat results already published by the same or other authors before the submission to AR.
 - plagiarism is detected by plagiarism screening services.
 (Rejection rate (2016): 66%).

10. Authors who wish to prepare a review should contact the Managing Editor of the journal in order to get confirmation of interest in the particular topic of the review. The expression of interest by the Managing Editor does not necessarily imply acceptance of the review by the journal.

11. Authors may inquire information about the status of their manuscript(s) by calling the Editorial Office at +30-22950-53389, Monday to Friday 9.00-16.00 (Athens time), or by sending an e-mail to journals@iiar-anticancer.org

12. Authors who wish to edit a special issue on a particular topic should contact the Managing Editor.

13. Authors, Editors and Publishers of books are welcome to submit their books for immediate review in AR. There is no fee for this service. (This text is a combination of advice and suggestions contributed by Editors, Authors, Readers and the Managing Editor of AR).

Copyright© 2017 - International Institute of Anticancer Research (G.J. Délinasios). All rights reserved (including those of translation into other languages). No part of this journal may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher.